硫脲有机催化
外观
在有机催化领域, (硫)脲有机催化指利用脲或硫脲来加快有机反应速率或控制立体化学。与经典的催化方法不同,这种催化方法的利用的是底物和(硫)脲之间形成的氢键作用(可以认为发生“部分质子化”)。(硫)脲有机催化的应用包括立体选择性应用与非立体选择性应用[1]
历史
[编辑]Kelly、Etter、Jorgensen、Hine、Curran、Göbel和De Mendoza(参见下文引用的参考文献)在非金属小分子氢键催化领域作出了开创性贡献。Peter R. Schreiner及其同事确定并引入了缺电子的硫脲衍生物作为氢键有机催化剂。Schreiner的选择的硫脲为N,N'-二[3,5-二(三氟甲基)苯基]硫脲,这种催化剂结合了双氢键介导的有机催化剂的所有结构特征:
催化剂-底物相互作用
[编辑]硫脲衍生物和羰基底物之间形成了两个氢键。(硫)脲中共面的两个氨基取代基是氢键的给体。[2] [3] [4] [5] 方酰胺利用双氢键进行催化的性能通常优于硫脲。 [6]
硫脲有机催化剂的优点
[编辑](硫) 脲是符合绿色化学理念要求的催化剂,在应用中具有以下优势:
- 由于氢键的结合焓相对较低,因此(硫)脲催化剂的活性通常不会被产物抑制,但是可以特异性识别底物
- 催化剂用量低(可以低至0.001 mol%)[3]
- 高TOF (周转频率)值(高达 5,700 h-1 ) [3]
- 可以由(手性)伯胺与异硫氰酸酯反应合成,较为简单、廉价
- 性质较稳定,易于处理,不需要惰性气体氛围保护
- 可以固定在固相聚合物上,便于催化剂回收与重复使用[3]
- 可以在中性、温和条件下进行催化(pKa(硫脲) = 21.0, DMSO)[8],可兼容对酸敏感的底物
- 不含金属,与传统含金属的路易斯酸催化剂相比毒性更小
- 耐水,甚至在水溶液体系中仍然具有催化能力[9]
底物
[编辑]可接受氢键的底物包括羰基化合物、亚胺、硝基烯烃。 Diels-Alder反应也可以受(硫)脲催化。
催化剂
[编辑]已开发出多种单官能和双官能的手性双氢键(硫)脲有机催化剂,以催各种可以用于合成的有机反应。
-
2003: Takemoto将双官能手性硫脲衍生物用于不对称Michael反应和Aza-Henry反应的催化 [12]
-
2004: Nagasawa利用手性双硫脲有机催化剂催化不对称贝利斯-希尔曼反应 [13]
-
2005: Nagasawa利用双功能硫脲官能化的胍不对称催化亨利反应[14]
-
2005: Ricci利用带有额外羟基的手性硫脲衍生物,催化吲哚与硝基烯烃发生有对映选择性的傅克烷基化[15]
-
2005: Wei Wang利用双官能联萘硫脲衍生物,不对称催化Morita-Baylis-Hillman反应[16]
-
2006: Yong Tang利用手性双官能吡咯烷硫脲催化环己酮对硝基烯烃的对映选择性迈克尔加成[19]
-
2006: Takemoto使用PEG结合的手性硫脲,不对称催化反式-β-硝基苯乙烯的(串联)迈克尔反应的氮杂-亨利反应。[20]
-
2007: Kotke/Schreine使用与聚苯乙烯结合的硫脲衍生物,催化醇的四氢吡喃化[3]
-
2007: Wanka/Schreiner利用手性肽金刚烷硫脲催化Morita-Baylis-Hillman反应[21]
-
2007: Takemoto利用螯合的双官能羟基硫脲催化喹啉的对映选择性Petasis型反应[22]
拓展阅读
[编辑]- Christian M. Kleiner, Peter R. Schreiner. Hydrophobic amplification of noncovalent organocatalysis. Chem. Commun. 2006: 4315–4017.
- Z. Zhang and P. R. Schreiner. Thiourea-Catalyzed Transfer Hydrogenation of Aldimines. Synlett. 2007, 2007 (9): 1455–1457. doi:10.1055/s-2007-980349.
- Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975.
参考文献
[编辑]- ^ Kotke, Mike; Schreiner, Peter R. (Thio)urea Organocatalysts. Petri M. Pihko (编). Hydrogen Bonding in Organic Synthesis. October 2009: 141 to 251 [2022-01-15]. ISBN 978-3-527-31895-7. (原始内容存档于2014-01-15).
- ^ Alexander Wittkopp, Peter R. Schreiner, "Diels-Alder Reactions in Water and in Hydrogen-Bonding Environments", book chapter in "The Chemistry of Dienes and Polyenes" Zvi Rappoport (Ed.), Volume 2, John Wiley & Sons Inc.; Chichester, 2000, 1029-1088. ISBN 0-471-72054-2.
Alexander Wittkopp, "Organocatalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic and Aqueous Solvents", dissertation written in German, Universität Göttingen, 2001. English abstract/download:
Peter R. Schreiner, review: "Metal-free organocatalysis through explicit hydrogen bonding interactions", Chem. Soc. Rev. 2003, 32, 289-296. abstract/download:
M. Kotke and P. R. Schreiner. Acid-free, organocatalytic acetalization. Tetrahedron. 2006, 62 (2–3): 434–439. doi:10.1016/j.tet.2005.09.079.M. P. Petri. Activation of Carbonyl Compounds by Double Hydrogen Bonding: An Emerging Tool in Asymmetric Catalysis. Angewandte Chemie International Edition. 2004, 43 (16): 2062–2064. PMID 15083451. doi:10.1002/anie.200301732.
Yoshiji Takemoto, review: "Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors", Org. Biomol. Chem. 2005, 3, 4299-4306. abstract/download: Mark S. Taylor, Eric N. Jacobsen. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angewandte Chemie International Edition. 2006, 45 (10): 1520–1543. PMID 16491487. doi:10.1002/anie.200503132.J. C. Stephen. Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry: A European Journal. 2006, 12 (21): 5418–5427. PMID 16514689. doi:10.1002/chem.200501076. - ^ 3.0 3.1 3.2 3.3 3.4 Kotke, Mike; Peter Schreiner. Generally Applicable Organocatalytic Tetrahydropyranylation of Hydroxy Functionalities with Very Low Catalyst Loading. Synthesis. 2007, 2007 (5): 779–790. ISSN 0039-7881. doi:10.1055/s-2007-965917.
- ^ 4.0 4.1 Schreiner, Peter R.; Alexander Wittkopp. H-Bonding Additives Act Like Lewis Acid Catalysts. Organic Letters. 2002, 4 (2): 217–220. ISSN 1523-7060. PMID 11796054. doi:10.1021/ol017117s.
- ^ Kotke, Mike. Hydrogen-Bonding (Thio)urea Organocatalysts in Organic Synthesis : State of the art and Practical Methods for Acetalization, Tetrahydropyranylation, and Cooperative Epoxide Alcoholysis (Ph.D.). University Giessen/Germany. 2009 [2010-11-12]. (原始内容存档于2012-08-29).
- ^ Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Bifunctional Amine-Squaramides: Powerful Hydrogen-Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Adv. Synth. Catal. 2015, 357 (2–3): 253–281. doi:10.1002/adsc.201401003.
- ^ Wittkopp, Alexander; Peter R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels–Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. ISSN 0947-6539. PMID 12532289. doi:10.1002/chem.200390042.
- ^ Bordwell, Frederick G.; Ji, Guo Zhen. Effects of structural changes on acidities and homolytic bond dissociation energies of the hydrogen-nitrogen bonds in amidines, carboxamides, and thiocarboxamides. Journal of the American Chemical Society. 1991-10-01, 113 (22): 8398–8401. ISSN 0002-7863. doi:10.1021/ja00022a029.
- ^ A. Wittkopp and P. R. Schreiner. Metal-Free, Noncovalent Catalysis of Diels-Alder Reactions by Neutral Hydrogen Bond Donors in Organic Solvents and in Water. Chemistry: A European Journal. 2003, 9 (2): 407–414. PMID 12532289. doi:10.1002/chem.200390042.
- ^ Sigman, Matthew S.; Eric N. Jacobsen. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. Journal of the American Chemical Society. 1998, 120 (19): 4901–4902. ISSN 0002-7863. doi:10.1021/ja980139y.
- ^ Sigman, Matthew S.; Petr Vachal; Eric N. Jacobsen. A General Catalyst for the Asymmetric Strecker Reaction. Angewandte Chemie International Edition. 2000, 39 (7): 1279–1281. ISSN 1433-7851. PMID 10767031. doi:10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U.
- ^ Okino, Tomotaka; Yasutaka Hoashi; Yoshiji Takemoto. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society. 2003, 125 (42): 12672–12673. ISSN 0002-7863. PMID 14558791. doi:10.1021/ja036972z.
- ^ Sohtome, Yoshihiro; Aya Tanatani; Yuichi Hashimoto; Kazuo Nagasawa. Development of bis-thiourea-type organocatalyst for asymmetric Baylis–Hillman reaction☆. Tetrahedron Letters. 2004, 45 (29): 5589–5592. ISSN 0040-4039. doi:10.1016/j.tetlet.2004.05.137.
- ^ Sohtome, Yoshihiro; Yuichi Hashimoto; Kazuo Nagasawa. Guanidine-Thiourea Bifunctional Organocatalyst for the Asymmetric Henry (Nitroaldol) Reaction. Advanced Synthesis & Catalysis. 2005, 347 (11–13): 1643–1648. ISSN 1615-4150. doi:10.1002/adsc.200505148.
- ^ Herrera, Raquel P.; Valentina Sgarzani; Luca Bernardi; Alfredo Ricci. Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst. Angewandte Chemie International Edition. 2005, 44 (40): 6576–6579. ISSN 1433-7851. PMID 16172992. doi:10.1002/anie.200500227.
- ^ Wang, Jian; Hao Li; Xinhong Yu; Liansuo Zu; Wei Wang. Chiral Binaphthyl-Derived Amine-Thiourea Organocatalyst-Promoted Asymmetric Morita−Baylis−Hillman Reaction. Organic Letters. 2005, 7 (19): 4293–4296. ISSN 1523-7060. PMID 16146410. doi:10.1021/ol051822+.
- ^ Vakulya, Benedek; Szilárd Varga; Antal Csámpai; Tibor Soós. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters. 2005, 7 (10): 1967–1969. ISSN 1523-7060. PMID 15876031. doi:10.1021/ol050431s.
- ^ McCooey, Séamus H.; Stephen J. Connon. Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition. 2005, 44 (39): 6367–6370. ISSN 1433-7851. PMID 16136619. doi:10.1002/anie.200501721.
- ^ Cao, Chun-Li; Meng-Chun Ye; Xiu-Li Sun; Yong Tang. Pyrrolidine−Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. Organic Letters. 2006, 8 (14): 2901–2904. ISSN 1523-7060. PMID 16805512. doi:10.1021/ol060481c.
- ^ Miyabe, Hideto; Sayo Tuchida; Masashige Yamauchi; Yoshiji Takemoto. Reaction of Nitroorganic Compounds Using Thiourea Catalysts Anchored to Polymer Support. Synthesis. 2006, 2006 (19): 3295–3300. ISSN 0039-7881. doi:10.1055/s-2006-950196.
- ^ Wanka, Lukas; Chiara Cabrele; Maksims Vanejews; Peter R. Schreiner. γ-Aminoadamantanecarboxylic Acids Through Direct C–H Bond Amidations. European Journal of Organic Chemistry. 2007, 2007 (9): 1474–1490. ISSN 1434-193X. doi:10.1002/ejoc.200600975.
- ^ Yamaoka, Yousuke; Hideto Miyabe; Yoshiji Takemoto. Catalytic Enantioselective Petasis-Type Reaction of Quinolines Catalyzed by a Newly Designed Thiourea Catalyst. Journal of the American Chemical Society. 2007, 129 (21): 6686–6687. ISSN 0002-7863. PMID 17488015. doi:10.1021/ja071470x.
- ^ Liu, Kun; Han-Feng Cui; Jing Nie; Ke-Yan Dong; Xiao-Juan Li; Jun-An Ma. Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional Primary Amine-thiourea Catalysts Based on Saccharides. Organic Letters. 2007, 9 (5): 923–925. ISSN 1523-7060. PMID 17288432. doi:10.1021/ol0701666.
- ^ Li, Xiao-Juan; Kun Liu; Hai Ma; Jing Nie; Jun-An Ma. Highly Enantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides. Synlett. 2008, 2008 (20): 3242–3246. ISSN 0936-5214. doi:10.1055/s-0028-1087370.