關於與「
極限 (數學)」標題相近或相同的條目頁,請見「
極限」。
極限(英語:Limit)是函數在自變量無限變大或無限變小或在某個區間時所接近的值[1],也是數學分析或微積分的重要基礎概念,連續和導數都是通過極限來作定義。極限分為描述一個序列的下標愈來越大時的趨勢(序列極限),或是描述函數的自變量接趨近某個值時的函數值的趨勢(函數極限)。
函數極限可以推廣到網中,而數列的極限則與範疇論中的極限和有向極限密切相關。
以數列為例,直觀上隨着n的增大,越來越接近0,於是可以認為0是這個序列的"極限"。以下的嚴格定義來自於柯西:
設,若對任意,存在,使得當時,有以邏輯符號來表示即為則稱數列 收斂於 ,記作 或 。這時也稱這個數列是收斂的,反之稱為發散。可以證明極限是唯一的,也就是
直觀地說,不論把"差距範圍" 取得多小,從某項 跟 的距離都會比 小。
考慮定義域為 ,對應規則為 的函數在 趨向 的時候的性質。此時 於 是有定義的。
f(1.9) |
f(1.899) |
f(1.999) |
f(2) |
f(2.001) |
f(2.01) |
f(2.1)
|
0.4121 |
0.4012 |
0.4001 |
0.4 |
0.3998 |
0.3988 |
0.3882
|
當趨向的時候,函數值似乎趨向,因此我們有 "極限" ,正好就是 ,這種情況我們稱為在 "連續"。
但有時趨近"極限"不會是那個函數值,考慮定義域為 ,對應規則為
的函數,那麼當 趨於 的時候,的極限似乎與前面的 相同都是。但 ,這就是說, 在 是不連續。
有時趨近的點甚至是不在定義域裡(也就是無定義),考慮到算式 ( 本質上是一階邏輯中的項,所以下面以冒號來代表符號辨識上的定義,而非"數字"意義上的相等 )
當 時,算式 等於零除以零而沒有定義。但以 有定義的最大定義域 ( 去除 的實數系 ) , 跟對應規則 來定義的函數 , 趨近於 的"極限"似乎是
f(0.9) |
f(0.99) |
f(0.999) |
f(1.0) |
f(1.001) |
f(1.01) |
f(1.1)
|
1.95 |
1.99 |
1.999 |
未定義 |
2.001 |
2.010 |
2.10
|
若 是一個實函數 ( 也就是定義域和值域都包含於實數系 ) ,,那麼
用ε-δ語言定義為:對所有的,都存在 使得:對任意 滿足時會有。以邏輯符號來表示即為
與函數趨於某個給定值時的極限概念相關的是函數在無窮遠處的概念。這個概念不能從字面上直接理解為:距離無窮遠越來越小的狀態,因為無窮不是一個給定的數,也不能比較距離無窮的遠近。因此,我們用越來越大(如果討論正無窮時)來替代。
例如考慮.
當非常大的時候,的值會趨於。事實上,與之間的距離可以變得任意小,只要我們選取一個足夠大的就可以了。此時,我們稱趨向於(正)無窮時的極限是。可以寫為
形式上,我們可以定義:
為
類似地,我們也可以定義:
為
極限的符號為lim,它出自拉丁文limit(界限)的前三個字母。
在1786年出版的德國人瀏伊連(S. L'Huilier)的書中,第一次使用這個符號。不過,「x趨於a」當時都記作「x=a」,直到20世紀人們才逐漸用「→」替代「=」。
英國近代數學家哈代是第一個使用現代極限符號的人。
- ,這裡S是個內積算法。
- ,這裡b是常量。
以下規則只有當等號右邊的極限存在並且不為無限時才成立:
在引入網的概念下,上述的定義可以毫無障礙地推廣到任何拓撲空間。事實上,現代數學中的極限概念就是定義在拓撲空間上的,上述的例子都是拓撲空間的具體化。
範疇論中許多泛性質也可從極限來理解。範疇論極限分為極限與余極限(又稱上極限),彼此的定義相對偶。
- ^ Stewart, James. Calculus: Early Transcendentals 6th. 聖智學習. 2008. ISBN 978-0-495-01166-8.